UAV-Based Estimation of Grain Yield for Plant Breeding: Applied Strategies for Optimizing the Use of Sensors, Vegetation Indices, Growth Stages, and Machine Learning Algorithms

نویسندگان

چکیده

Non-destructive in-season grain yield (GY) prediction would strongly facilitate the selection process in plant breeding but remains challenging for phenologically and morphologically diverse germplasm, notably under high-yielding conditions. In recent years, application of drones (UAV) spectral sensing has been established, data acquisition processing have to be further improved with respect efficiency reliability. Therefore, this study evaluates measurement dates, sensors, parameters, as well machine learning algorithms. Multispectral RGB were collected during all major growth stages winter wheat trials tested GY using six machine-learning Trials conducted 2020 2021 two locations southeast eastern areas Germany. most cases, milk ripeness stage was reliable from individual maximum accuracies differed substantially between drought-affected (R2 = 0.81 R2 0.68 both locations, respectively), wetter, pathogen-affected conditions 0.30 0.29). The combination multiple dates (maximum 0.85, 0.81, 0.61, 0.44 four-year*location combinations, respectively). Among parameters investigation, best RGB-based indices achieved similar predictions multispectral indices, while differences algorithms comparably small. However, support vector machine, together random forest gradient boosting performed better than partial least squares, ridge, linear regression. results indicate useful sparser canopies, whereas improvements are required dense canopies counteracting effects pathogens. Efforts measurements more rewarding enhanced information (multispectral versus RGB).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach

abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...

15 صفحه اول

the relationship between locus of control, efl reading and writing achievement, and use of language learning strategies

تاثیر منبع کنترل رفتار بر روی موفقیت تحصیلی زبان آموزان انگلیسی بندرت در ایران ارزیابی شده است. هدف این تحقیق ارزیابی رابطه بین منبع کنترل رفتار زبان آموزان انگلیسی و موفقیت آنها در مهارت های خواندن و نوشتن زبان انگلیسی است. محقق همچنین رابطه بین منبع کنترل رفتار و راهبردهای یادگیری زبان انگلیسی را در این تحقیق جستجو می کند. بدین منظور محقق ابتدا نسخه فارسی پرسشنامه منبع کنترل رفتار (duttweiler...

15 صفحه اول

Improving the Performance of Machine Learning Algorithms for Heart Disease Diagnosis by Optimizing Data and Features

Heart is one of the most important members of the body, and heart disease is the major cause of death in the world and Iran. This is why the early/on time diagnosis is one of the significant basics for preventing and reducing deaths of this disease. So far, many studies have been done on heart disease with the aim of prediction, diagnosis, and treatment. However, most of them have been mostly f...

متن کامل

on the relationship between self- regulated learning strategies use and willingness to communicate in the context of writing

این تحقیق به منظور بررسی رابطه بین میزان استراتژیهای خود-تنظیم شده یادگیری و تمایل به ایجاد ارتباط دانشجویان زبان انگلیسی انجام شده است.علاوه بر این،روابط و کنش های موجود بین ریزسنجه های استراتژیهای خود-تنظیم شده یادگُیری ، مهارت نگارش و تمایل به برقراری ارتباط و همچنین تاٍثیرجنسیت دانشجویان زبان انگلیسی در استراتژیهای خود-تنظیم شده یادگیری و تمایل به برقراری ارتباط آنها مورد بررسی قرار گرفته شد.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2022

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs14246345